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ABSTRACT: Developed as part of a larger effort by the National Weather Service (NWS) Radar Operations Center to
modernize their suite of single-radar severe weather algorithms for the WSR-88D network, the Tornado Probability Algo-
rithm (TORP) and the NewMesocyclone Detection Algorithm (NMDA) were evaluated by operational forecasters during
the 2021 National Oceanic and Atmospheric Administration (NOAA) Hazardous Weather Testbed (HWT) Experimental
Warning Program Radar Convective Applications experiment. Both TORP and NMDA leverage new products and advan-
ces in radar technology to create rotation-based objects that interrogate single-radar data, providing important summary
and trend information that aids forecasters in issuing time-critical and potentially life-saving weather products. Utilizing
virtual resources like Google Workspace and cloud instances on Amazon Web Services, 18 forecasters from the NOAA/
NWS and the U.S. Air Force participated remotely over three weeks during the spring of 2021, providing valuable feed-
back on the efficacy of the algorithms and their display in an operational warning environment, serving as a critical step in
the research-to-operations process for the development of TORP and NMDA. This article will discuss the details of the
virtual HWT experiment and the results of each algorithm’s evaluation during the testbed.

SIGNIFICANCE STATEMENT: Before transitioning newly developed radar-based severe weather applications
to forecasting operations, an experiment simulating the use of these tools by end users issuing severe weather
warnings is helpful to identify both how they are best utilized and address any needed improvements to increase
their operational readiness. Conducted in 2021, this study describes the forecaster evaluation of the single-radar
Tornado Probability Algorithm (TORP) and the New Mesocyclone Detection Algorithm (NMDA) in one of the
first completely virtual Hazardous Weather Testbed (HWT) experiments. Participants stated both TORP and
NMDA offered marked improvement over the currently available algorithms by helping the operational forecaster
build their confidence when issuing severe weather warnings and increasing their overall situational awareness of
storms within their domain.
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1. Introduction

The Tornado Detection Algorithm (TDA; Mitchell et al.
1998) and the Mesocyclone Detection Algorithm (MDA;
Stumpf et al. 1998) were developed by the National Oceanic
and Atmospheric Administration’s (NOAA) National Severe
Storms Laboratory (NSSL) in the 1990s to aid operational
forecasters in severe weather warning decision making, and
are part of the current suite of operational Next Generation
Weather Radar (NEXRAD) Level III algorithms. The TDA
and MDA both utilize WSR-88D single-radar data to identify
potential tornadoes and mesocyclones in radial velocity data,
respectively, by using and expanding upon the pattern vector

technique first developed in Hennington and Burgess (1981),
further outlined in Zrnić et al. (1982), and applied by subse-
quent studies that the TDA/MDA development was built upon
(Zrnić et al. 1985; Wieler 1986; Desrochers and Donaldson
1992). Unlike some of the early tornado detection algorithms,
the TDA does not require the presence of a mesocyclone to
generate a detection and utilizes less stringent criteria to identify
locations of vortices in radial velocity data. Similarly, the MDA
is more thorough than earlier versions as it detects a much larger
spectrum of storm-scale rotational features by putting more of
the feature thresholding emphasis on the final volumetric fea-
tures rather than during the initial creation of the radial velocity
shear vectors. When operating, the TDA produces a single prod-
uct while the MDA produces both the mesocyclone detection
(MD) product, generated only at the end of a radar volume
scan, and a digital mesocyclone detection (DMD) product that
is generated with each radar tilt (Warning Decision Training
Division 2022b).

While performing well in the case studies presented in their
seminal publications, studies evaluating the algorithms using
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larger datasets have shown that the detection rate of tornadic
vortices by the TDA is very low at around 5%–17% (Jones
et al. 2004; Sandmæl et al. 2023) and numerous spurious de-
tections, largely due to poor velocity de-aliasing and ground
clutter, plague the MDA (Mitchell et al. 2000; McGrath et al.
2002). Since the introduction of these algorithms, there have
been several major advancements to the WSR-88D fleet that
aid forecasters in the interrogation of severe and tornado-
producing storms including dual-polarization (e.g., Ryzhkov
et al. 2005), upgrades to scanning strategies in both spatial
and temporal resolution (Torres and Curtis 2007; Kingfield and
French 2022), and new derivative radar products (Mahalik
et al. 2019). To fully leverage these modern products and
advances in radar technology, the National Weather Service
(NWS) Radar Operations Center (ROC) tasked the NSSL
with developing two new algorithms, the Tornado Probability
Algorithm (TORP) and New Mesocyclone Detection Algo-
rithm (NMDA), as proposed replacements for the operational
TDA and MDA, respectively. Described in detail by Sandmæl
et al. (2023), TORP is a machine learning-based algorithm
that provides object-based probabilities of a tornado occur-
ring that are derived from a random forest model (Breiman
2001). The NMDA does not utilize machine learning but in-
stead diagnostically detects and tracks mesocyclones and
other rotational features within volumetric radar data by ap-
plying a defined set of statistical parameters and thresholds
to various single-radar fields. While both algorithms utilize
a linear least squares derivative (LLSD) azimuthal shear
(AzShear; Mahalik et al. 2019) gradient of de-aliased radial
velocity as the main product to drive identification of rota-
tional interest areas, TORP provides a probability of an event
occurring (a tornado) while the NMDA provides a binary yes/
no decision on an event (a mesocyclone).

Operational products that are under development greatly
benefit from going through a thorough iterative research-to-
operations (R2O) process (Serafin et al. 2002; Kain et al.
2003; Clark et al. 2012; Gallo et al. 2017). Feedback from the
products’ intended end users is essential to ensure that a prod-
uct addresses their operational needs. There are several suc-
cess stories of transitioning products from research to
operations, such as ProbSevere, a machine learning-based
probabilistic guidance for severe storm warning operations
(Cintineo et al. 2013, 2018, 2020), and the Hazard Services
software toolkit that allows NWS forecasters to streamline
the process of issuing products such as flood warnings (Argyle
et al. 2017). As is the case with many other operational prod-
ucts, ProbSevere and Hazard Services have both gone
through extensive testing through experiments in NOAA’s
Hazardous Weather Testbed (HWT) before being transi-
tioned to fully operational forecasting tools.

One long-standing HWT program that has been part of the
R2O process for many operational algorithms and techniques
is the Experimental Warning Program (EWP; Calhoun et al.
2021). Developed and formalized within the HWT in the early
2000s, the EWP resulted from algorithm development collab-
orations between NSSL and local NOAA NWS Weather
Forecast Offices (WFOs; e.g., Scharfenberg et al. 2005). The
purpose of the EWP is to work toward an improvement in

forecasting severe and high-impact weather on the convective
warning time scale (0–2 h) by transitioning novel research
products to operations and soliciting invaluable feedback
from the intended users before the products are finalized,
through the use of targeted experiments, such as the Radar
Convective Applications (RCA) experiment. Originating in
2019 and organized by principal investigators (PIs) from the
University of Oklahoma (OU) Cooperative Institute for Se-
vere and High-Impact Weather Research and Operations
(CIWRO), formerly known as the Cooperative Institute for
Mesoscale Meteorological Studies (CIMMS), and NSSL, the
RCA experiment serves to evaluate the utility of innovative
single- and multiradar based convective algorithms, including
TORP and NMDA.

In 2020, the planned evaluation of TORP and NMDA in
the RCA experiment was postponed due to COVID-19 and
moved to 2021 where it operated as a fully virtual experiment.
While not the first HWT experiment to be held completely
virtually (Clark et al. 2021), the RCA experiment was one of
the first to utilize remote versions of the Advanced Weather
Interactive Processing System II (AWIPS-II), which was
hosted on the Amazon Web Services (AWS) cloud platform
that allowed participants to evaluate the algorithms using
AWIPS-II just as they would within a typical in-person HWT
experiment. Combining this with the use of online communi-
cation platforms such as Google Meet and Slack, PIs were
able to closely recreate the in-person HWT experience, pro-
viding participants with the necessary resources to properly
assess the algorithms via this new virtual HWT format.

Considered a success by both PIs and participants, the
virtual 2021 HWT EWP RCA experiment provided a wealth
of important feedback to drive the development of TORP
and NMDA, even in the midst of a fledgling virtual HWT en-
vironment. This article serves as a complete overview of the
experiment by providing a summary of the two algorithms
evaluated, the experiment design, and the results of the exper-
iment through detailing the reception and evaluation of each
algorithm. The subjective assessment of the algorithms explores
how they can be used operationally and how the iterative devel-
opment and testing process involving communication between
the research and operational communities can be utilized to
benefit algorithm development.

2. Algorithm descriptions

TORP and NMDA are part of a larger effort by the ROC
to modernize their suite of single-radar severe weather algo-
rithms for the WSR-88D network. Both algorithms utilize
maxima of velocity-derived AzShear in the identification of
rotational interest areas within the single-radar data, which is
different from the pattern vector techniques used by the TDA
and MDA to identify rotation with a radial velocity field.
LLSD AzShear helps to provide a cleaner, more easily quan-
tifiable radar field on which to examine for rotation, which is
achieved through removing outliers in the data by smoothing
and using a local neighborhood of values for a more robust
gradient calculation. These interest areas are then further in-
terrogated by each algorithm using different methods in order
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to ascertain the probability of a tornado occurring (TORP) or
whether an area of rotation exists (NMDA).

The random forest machine learning model used by TORP
to calculate tornado probabilities is based on radar data from
a wide variety of past weather events. TORP utilizes all avail-
able base radar (Level-II) products from single-radar single-
tilt scans (0.58 by default) from the WSR-88D network,
including dual-pol variables (NOAA/NWS/ROC 1991), to
create predictors for the random forest model. It also uses the
LLSD gradients (azimuthal, radial, and total gradients) of
each radar product (Mahalik et al. 2019). The model com-
pares these predictor values with thresholds found from ran-
dom samples of the radar data from past weather events. In
overview, TORP 1) reads in single-tilt single-radar data and
the random forest model summarized in a text file, 2) creates
objects based on a 0.006-s21 threshold of single-radar AzShear,
3) extracts data within 2.5 km of the center of each object,
4) assigns a tornado probability based on the random forest
model output, and 5) tracks the objects in time. More details
can be found in Sandmæl et al. (2023).

The NMDA operates over all available tilts and uses a
radial velocity-derived LLSD AzShear field in conjunction
with other radial velocity-derived products and base radar
(Level-II) fields to drive detection generation, perform qual-
ity control, and derive detection-based attributes that provide
information such as feature strength and size. To track detec-
tions over time, mean storm motion is calculated from a
model-derived sounding table that is used as a method to ini-
tially link detections before an object-centric tracking method
gradually takes over as a detection builds a longer track his-
tory. Additional details regarding the NMDA’s detection
generation and tracking process, along with descriptions of
the algorithm’s strengths and limitations, are outlined in the
appendix.

3. 2019 HWT EWP RCA
experiment—NMDA evaluation

The NMDA’s initial prototype was first evaluated in the
2019 HWT EWP RCA experiment, two years prior to the
2021 virtual experiment described in this study. Occurring
over 6 weeks in the spring of 2019, the NMDA was evaluated
by 35 participants, including operational forecasters from
both the NWS and Department of Defense (DoD), who pro-
vided feedback on its performance in a pseudo-operational
warning environment. Participants evaluated the ability of the
NMDA to detect and track mesocyclones relative to the MDA,
which included both its MD and DMD products (Warning
Decision Training Division 2022b). Since the initial NMDA de-
velopment task only included replacing the core of the MDA,
the NMDAutilized the preexistingMDAAWIPS-II visualization
package for this HWT evaluation. Due to TORP being in the
early stages of development in 2019, it was not included in this
experiment.

The experiment participants found that the performance
of the NMDA displayed promising results in its ability to aid
the operational forecaster in detecting and tracking rotation
within thunderstorms, outperforming the MDA across the

same metrics. Relating directly to the MDA, the overwhelm-
ing majority of participants stated, both informally in discus-
sion and formally through specified feedback collection
methods (i.e., surveys), that they did not operationally use the
MDA products. Their reasoning stemmed from three main
arguments: 1) low trust in the MDA due to the known high
false-alarm rates, 2) official training that encourages the use
of radar base data when making warning decisions (Warning
Decision Training Division 2022a), and 3) a cumbersome visuali-
zation package that features a large unmovable table listing algo-
rithm detections. These MDA-related findings combined with
the promising performance of the NMDA provided sound justi-
fication to forego a second evaluation between both algorithms
in the 2021 HWT experiment. Additionally, it elevated the need
to update the existing AWIPS-II visualization package.

New AWIPS-II algorithm visualizations

Following these results, the main focus of the work following
the 2019 HWT experiment was to develop a new AWIPS-II
visualization package to provide a modern design that al-
lowed the full potential of TORP and NMDA to be utilized
by the operational end users. The 2019 participants suggested
that the ideal NMDA visualization (and eventually TORP)
would display detections as icons with a mouse-over feature
that would produce a dropdown list of detection attributes,
similar to that of the preexisting ProbSevere visualization
plugin within AWIPS-II (Fig. 1 from Cintineo et al. 2018).
This simple read-out would allow participants to view addi-
tional details in a compact and user-friendly graphic, replacing
the static tables used by the TDA and MDA products to dis-
play a tabulated list of the current detections and their attrib-
utes (Fig. 1). The amount of screen space that is occupied by
an AWIPS-II product is very important to forecasters and the
use of large graphics, such as those with the TDA and MDA,
can quickly overwhelm an AWIPS-II display interface.

By the start of the 2021 HWT evaluation in April 2021,
a prototype of the new AWIPS-II visualization plugin was
ready for participants to evaluate (Fig. 2). The strengths of
this new visualization lies in its simple and easy-to-use format
that is highly customizable by the end user to tailor it to their
specific operational needs. Detection icons are shaded by
probability (TORP) and AzShear strength (NMDA) to pro-
vide a quick method for prioritizing the importance of each
detection. For both algorithms, the mouse-over readout dis-
plays detection attributes such as strength, size, tracking infor-
mation, and details specific to the feature each algorithm is
engineered to detect. For example, TORP provides a list of
the machine learning model predictors, such as the nearby
AzShear maximum associated with the rotational strength of
a circulation or the local minimum in correlation coefficient,
which could be indicative of a tornado debris signature (Ryzhkov
et al. 2005), while the NMDA displays information important to
mesocyclones such as depth characteristics. Certain attributes,
such as maximum AzShear, also contain contextual labels (e.g.,
low, medium, high, extreme) that are based on climatology-
derived distributions of severe storm reports. Additionally, since
both algorithms track their detections over time, trend indicators

S A NDMÆL E T A L . 1127JULY 2023

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 08/03/23 06:00 PM UTC



are added next to trackable attributes to provide context on
whether its value is changing. All attributes displayed by the
mouse-over readout are optional to display, allowing the end
user to decide what detection information is pertinent to them.

4. 2021 Virtual HWT experiment design

The 2021 HWT RCA experiment was conducted over three
weeks (19–23 April, 3–7May, 17–21May) and designed/facilitated

by six CIWROmeteorologist staff members affiliated with the
NSSL, who were all certified for social/behavioral/educational
human subject research through the Collaborative Institu-
tional Training Initiative, also known as the CITI Program
(Collaborative Institutional Training Initiative 2023). 16 forecasters
from the NWS and two from the U.S. Air Force participated
in the experiment, with six forecasters participating each
week. The forecaster participants were chosen from a pool of
applicants that were asked to list the length of their forecasting

FIG. 1. Example of (a) a TDA detection, (b) an MD detection, and (c) a DMD detection
as they are currently displayed in AWIPS-II for two different storms on 3 Mar 2019 (TDA) and
14 May 2019 (MD and DMD).
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experience with the NWS and how long they have been issuing
warnings, as well as provide a personal statement describing why
they were interested in participating. The applicants were chosen
primarily based on their personal statements, but were also
picked to represent a group diverse in experience and geo-
graphic location. How many times the applicants had applied

and how many times they had been chosen to be a part of prior
HWT experiment were also taken into account, giving forecast-
ers who had low chosen-to-applied ratios the opportunity to par-
ticipate. This led to a group of ten general forecasters, five lead
forecasters, and one science and operations officer from the
NWS, with 2–29 years of warning experience with a median of

FIG. 2. TORP and NMDA as displayed in AWIPS-II, where TORP is displayed as triangles and NMDA is displayed
as circles.
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9.5 years. Additionally, the ROC selected two meteorological
trainers from the U.S. Air Force, each with decades of forecast-
ing experience to represent the DoD, one of the funding agen-
cies for the ROC. The experiment consisted of the participants
evaluating the operational performance and usefulness of TORP
and NMDA through a blend of real-time and displaced real-time
weather events (hereinafter referred to as archived cases) dis-
played in AWIPS-II hosted virtually on AWS’s cloud platform.

Prior to the start of the experiment week, participants were
provided with materials that gave a short overview of the
algorithms and how to use them. Each experiment week oper-
ated Monday through Friday, and began with group introduc-
tions and an overview of the experiment on Monday morning
(Fig. 3). To further familiarize the participants with the prod-
ucts and the technology they would be evaluating during the
experiment, two training cases were conducted; one archived
case in the morning and a real-time case in the afternoon.
These cases were also used to identify and remedy any tech-
nological problems that the participants might experience
in regard to operating in the virtual HWT environment. The
core of the algorithm evaluations took place Tuesday through
Thursday where participants used a mix of archived}that is,
displaced real-time simulations of past weather events}and
real-time cases during the evaluation process (see Table 1 for
the full list of cases evaluated). In the event that there was not
any active weather in the contiguous United States, the after-
noon real-time case would be replaced by an additional ar-
chived case. Postevaluation group discussions were conducted
at the conclusion of each case, followed by online surveys

soliciting additional forecaster feedback. Friday concluded
with an end-of-week group debrief and final survey covering
all facets of the experiment week.

The experiment was designed to focus on gathering feedback
and ideas for product improvement and subjective algorithm
performance evaluation, rather than controlled experiments to
measure the objective benefits of the algorithms in a warning
environment (i.e., comparing results between a control group
without access to the algorithms to a group that did). There-
fore, the experiment design was flexible in terms of evaluation
and feedback methods, while still retaining an overarching
structure. During each evaluation case, participants were split
into pairs to work as a team, with each pair assigned to a Google
Meet video chat room, while working with a facilitator who
would encourage discussion about what the participants were
observing and provide technical assistance as needed. To
promote fresh perspectives during the evaluations, partici-
pants were assigned a new partner each day. While working
an event, forecasters were largely encouraged to evaluate the
algorithms using four different methods: 1) investigating a
single algorithm, 2) investigating both algorithms, 3) utilizing
both algorithms in a simulated real-world warning operations
environment, or 4) using both algorithms in a simulated me-
soscale analyst role.

Participant feedback was collected via multiple methods to
foster different types of feedback that allowed project PIs to
accurately judge the performance of the algorithms, identify
problems, and prioritize future product improvements and ad-
ditions. Online surveys provided an even baseline throughout

FIG. 3. The virtual setup for the 2021 Hazardous Weather Testbed Experimental Warning Program Radar Convective Applications.
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the experiment upon which to judge each algorithm’s useful-
ness and performance across the various cases. Verbal com-
munication was an extremely important part of the feedback
process, both through the one-on-one discussions that oc-
curred between participants and facilitators during an evalua-
tion and the larger group discussions that occurred after each
evaluation. The open verbal discussion allowed the PIs to ask
pointed questions that dug deeper into particular aspects of
each algorithm and to obtain feedback that might not be cap-
tured via the surveys. Finally, blog posts were used during al-
gorithm investigation to provide more detailed analysis by
participants of important algorithm behavior, including screen-
shots, or suggestions on how the products could be improved
(publicly available at https://inside.nssl.noaa.gov/ewp). While
broad examples of blog usage were provided, no specific guid-
ance was given other than to document positives and negatives
of the algorithms, allowing participants to judge what level of
detail or frequency was appropriate for their particular use of
the blog during an evaluation. These feedback methods were
analyzed through manual review and summarized by grouping
each piece of feedback into common themes and selecting rele-
vant quotes.

The virtual nature of the HWT experiment combined with
novel algorithm and visualization development presented
unique challenges and opportunities. Both updates to the ex-
periment design, as well as updates to the algorithm products
themselves, were sometimes performed immediately after
evaluation periods based on feedback received from the par-
ticipants. A positive to a dynamic HWT evaluation like this is
that it enabled the experiment to adapt to participant needs

and to provide a better experience for those attending during
later weeks. Moreover, it increased the diversity of the feed-
back by enabling a shift in focus toward different areas of
interest in the event an early forecaster consensus on a partic-
ular topic was evident. However, these week-to-week changes
can sometimes make it difficult to glean consistent results
across participants, particularly if the changes involve the
algorithms themselves and the performance metrics that are
being calculated (i.e., warning verification). In the case of this
experiment, no updates were implemented to the core algo-
rithm logic, rather, only to the downstream visualization
package. While this did have a positive impact on algorithm
usability, the benefits of being able to improve the visualiza-
tion in real time before a future transition to operations far
outweighed any potential drawbacks (see results section be-
low for further discussion). Beyond this update to the visu-
alization package, adjustments to the experiment format
included providing additional background information for
archived cases, such as local terrain maps and surface obser-
vations, as well as more detailed instructions and expecta-
tions of how the virtual product evaluations were going to
occur. Participants in the second and third weeks were also
provided local storm reports for archived events as if they
were occurring in real time, announced both verbally and
sent via Slack messages by a staff member, as opposed to
only viewing tornado tracks of the event after the evalua-
tion period (Fig. 4). The forecasters had most, if not all,
of the products that they would have had available opera-
tionally in AWIPS-II accessible to them during the case
evaluations.

TABLE 1. List of cases. “Archived training” and “real-time training” refer to the cases that were used to familiarize participants with
the technical aspects of the experiment and were not formally used to evaluate the algorithms.

Date Time (UTC) County warning area(s)

No. of
forecasters
evaluated Type of case Convective mode

21 Oct 2019 0100–0300 Fort Worth–Dallas, TX (FWD) 18 Archived training Supercell
15 May 2018 1810–2025 Albany, NY (ALY); Binghamton, NY

(BGM); New York/Upton, NY (OKX)
17 Archived Supercell/linear

28 May 2018 0100–0315 Indianapolis, IN (IND); Northern Indiana
(IWX); Wilmington, OH (ILN)

18 Archived Supercell

21 Oct 2019 0230–0445 Norman, OK (OUN); Tulsa, OK (TSA) 18 Archived Linear
31 May 2018 2045–2300 Pocatello, ID (PIH) 6 Archived backup Supercell
19 Jun 2018 2000–2200 Boulder, CO (BOU); Cheyenne, WY (CYS) 12 Archived backup Supercell
19 Jul 2018 1930–2200 Des Moines, IA (DMX) 18 Archived backup Ordinary/supercell
19 Apr 2021 1930–2100 Melbourne, FL (MLB); Miami, FL (MFL) 6 Real-time training Multicell (weak)
3 May 2021 1900–2015 Columbia, SC (CAE); Greenville-

Spartanburg, SC (GSP); Peachtree City/
Atlanta, GA (FFC)

6 Real-time training Supercell/multicell

4 May 2021 1950–2215 Birmingham, AL (BMX); Jackson, MS (JAN);
New Orleans/Baton Rouge, LA (LIX)

6 Real-time Linear

6 May 2021 2000–2230 IND; Lincoln, IL (ILX); Memphis, TN
(MEG); Paducah, KY (PAH)

6 Real-time Linear/supercell
(weak)

17 May 2021 1900–2030 Albuquerque, NM (ABQ); Amarillo, TX
(AMA); Austin/San Antonio, TX
(EWX); FWD; Lubbock, TX (LUB);
San Angelo, TX (SJT)

6 Real-time training Supercell

18 May 2021 1950–2315 AMA; EWX; Corpus Christi, TX (CRP);
FWD; LIX; Shreveport, LA (SHV)

6 Real-time Linear/multicell
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5. 2021 Virtual HWT experiment results and discussion

The overarching goal of this HWT experiment was to use
participant exploration of the algorithm products and fore-
caster feedback to guide further algorithm development, ad-
vancing them to a readiness level for operational transition.
Participants were provided key aspects to focus on during
their evaluations, including the utility of the algorithms during
the warning decision-making process and the presentation of
algorithm information within the software. Forecasters were
asked how they would use the algorithms while working as a
radar operator, during the warning process, or other pertinent
activities. More specifically, project PIs were interested in
how the information provided by the algorithms influenced
their decision to warn (or not warn) a storm. Additionally,
participants evaluated the new AWIPS-II visualizations for
each algorithm and were asked to provide feedback on topics
such as the usefulness of the display, detection icons, attribute
fields, and several different types of customizable features.

The participants provided a wealth of feedback on their
impressions of the algorithms during the experiment. Findings
can be largely summarized into the main topics of algorithm
performance, impacts to warning decisions, operational readiness,
comparisons with the legacy products (in the case of TORP), and
the visualization package. This section serves as an overview of
the key findings associated with each algorithm.

a. TORP

1) QUALITATIVE COMPARISON WITH THE TDA

The main goal of TORP is to replace the TDA, so it was
important to gauge the forecasters’ opinions on how the two
algorithms compare in performance. In addition to the visuali-
zation upgrades, TORP provides additional storm-based in-
formation and a probability-based likelihood of a detected

tornado versus TDA’s binary detections, where a detection al-
ways infers the presence of a tornado. TORP also utilizes
dual-polarization products associated with tornado debris sig-
natures (Ryzhkov et al. 2005), which is something that was un-
available during the development of the TDA.

While TORP was not assessed during the 2019 HWT experi-
ment, many of the results pertaining to the use of the currently
operational MDA products also applied to the operational use
of the TDA. Citing an abundance of false alarms and recom-
mendations against using it in operations by experienced fore-
casters or training instructors, five (;28%) of the participating
forecasters said that they had never used the TDA. Of the fore-
casters that had used it before, 69% stated that they never or
rarely use it (Fig. 5), claiming it is “terrible,” “useless,” and
“unusable” due to “ridiculous false alarm rates,” recommending
against operational use of the TDA.

When asked at the end of the week whether the forecasters
would use the TDA, TORP, or neither, 100% of the forecasters
replied that they would use TORP. Similar to the results from
the 2019 NMDAHWT evaluation, some of the forecasters men-
tioned that the TDA visualization was a deterrent to using the
TDA. One forecaster found it “almost hard to compare” the two
algorithms since “TORP is much, much better,” while another de-
scribed TORP as “lightyears better” than the TDA. These findings
also reflect the results in Sandmæl et al. (2023) that showed
TORP performs better than the TDA in every objective perfor-
mance metric. The forecasters showed excitement about the pros-
pect of TORP replacing the TDA, including one who said they
were “really hoping to see TORP in operations” after evaluating it
and comparing it with the TDA.

2) FORECASTER-EVALUATED ALGORITHM PERFORMANCE

Overall, forecaster reception of TORP was very positive,
with 100% of the forecasters rating its ability to detect

FIG. 4. Screenshot of the experiment’s Slack workspace.
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tornadoes as “good” or “very good” (Fig. 6). The participants
found the product useful overall (Fig. 7), including one who
emphasized that “with the abundance of information forecasters
have, even ‘Slightly’ or ‘Moderately’ useful can be big,” referring
to TORP’s ability to condense and summarize large quantities of
single-radar information into one product. The only forecaster
that was unsure if they would use TORP participated in the
first week of the evaluation when the algorithm was less re-
fined. This forecaster said they would use TORP if it had a
more organized readout to better utilize the information and
additional filters for non-meteorological detections, both of
which were at least partially addressed by the introduction of
the customizable menu options during the end of the second
week of the experiment.

3) OPERATIONAL UTILITY

After evaluating TORP in a simulated warning environ-
ment, its noted advantages included its ability to provide good
guidance for rapid decision making and boosting forecaster
confidence in high-stress environments. 94% of the forecast-
ers agreed that TORP provided an overall increase in confi-
dence in warning situations. As indicated by the results in Fig. 7,
many forecasters also verbally expressed that they would use
TORP as a storm-interrogation tool for both warning decisions
as well as for overall situational awareness. By looking at the
color-indicated probability from the icons (colorbar shown in
Fig. 2), forecasters could quickly prioritize storms and identify
which circulations should be interrogated first. Additionally, TORP
alerted forecasters to storms that were intensifying, which was espe-
cially helpful during busy events. TORP sometimes even prompted
forecasters to investigate circulations earlier than they would have
otherwise.

When asked after each case whether or not TORP helped
increase tornado warning lead time, the forecasters answered
“yes” 71% of the time, citing that TORP increased their confi-
dence in issuing a warning. Forecasters indicated that having
their reasoning backed by the algorithm would remove their

need to wait for one more radar scan to make the final deci-
sion to issue a tornado warning.

Several forecasters mentioned that TORP was also espe-
cially helpful for both situational awareness and warning issu-
ance for marginal cases. For example, during an evaluation of
a displaced real-time case featuring a quasi-linear convective
system (QLCS), one forecaster missed a weak tornado early
in the simulation while in tornado-warning operations, only
realizing this after being alerted of a tornado report. The
TORP probabilities that were associated with this missed tor-
nadic circulation were high relative to other circulations in
the case and the forecaster used this experience to recognize a
potential developing tornado. When the forecaster noticed
TORP probabilities in the 40%–45% range for a new circula-
tion, the same range as the previously missed tornado, it in-
creased their confidence enough to issue a tornado warning
that provided a 10–12-min lead time on what eventually be-
came a new QLCS tornado. They explained that this lead
time would have been reduced without the assistance of
TORP, as they would have waited to see more QLCS tornado
confidence builders before making the tornado warning deci-
sion. QLCS tornadoes represent a difficult forecasting chal-
lenge (Brotzge et al. 2013) and many forecasters agreed that
identifying areas of concern in QLCSs is one of TORP’s main
strengths. This type of mental probability “re-calibration” was
also observed with several forecasters when they were evalu-
ating an archived case that included multiple storms with
weak radar returns that produced tornadoes. One forecaster
explained that they “warned on a storm that [they] would oth-
erwise never have thought to warn on given the radar fields.”

FIG. 5. Weekly survey feedback describing frequency of TDA
use (N 5 13). The number of responses for each option is listed to
the right of each bar.

FIG. 6. Weekly survey feedback rating TORP’s ability to detect
tornadoes (N 5 18). The answer options are listed in the legend un-
der the bar, with the number of responses for each option listed in
parentheses and the fraction of the responses displayed on the bar
itself.

FIG. 7. Weekly survey feedback concerning TORP’s usefulness
(N 5 18). The number of responses for each option is listed to the
right of each bar.
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This warning ended up verifying with a tornado report soon
after the forecaster issued a tornado warning, claiming that
“without TORP highlighting that storm, [they] would have
missed it completely.”

Though some forecasters were comfortable using TORP as
a primary decision maker for tornado warnings in certain sit-
uations, many stressed that TORP is not going to make warn-
ing decisions for them. It is rather something that they will
take into consideration when they are on the fence about issu-
ing a tornado warning, considering whether to add impact
tags, or when to discontinue a warning.

4) ADDRESSING LIMITATIONS AND SUGGESTED

ADDITIONAL CAPABILITIES

To prepare TORP for operational use, it was important to
identify areas of improvement before the transition to opera-
tions. The main limitation that the forecasters identified for
TORP was the occurrence of false detections, mainly caused
by ground clutter, poor de-aliasing, and sidelobe-contaminated
velocity data. By design, TORP will evaluate every area with
high rotational shear thresholded using a 20-dBZ reflectivity
filter dilated to expand the area covered by higher reflectivity
values and despeckled to reduce noise, which will retain the
highest possible number of real tornado detections to be evalu-
ated by TORP’s random forest model. Noted in the blog posts
written by the forecasters, this relatively relaxed filtering leads
to numerous low-probability detections, typically ranging from
0% to 20%, in association with obvious false detections based
on their meteorological experience. The majority of these blog
posts were written during the first week of evaluations, before
the implementation of the ability to filter TORP detections
based on an adjustable probability threshold, indicating that
this feature alleviated some of the issues with low-probability
noise detections.

Even though the false detections generally were assigned
very low probabilities, the forecasters would still refer to
them as false alarms. However, through the majority of the
case evaluations, the forecasters thought TORP handled the
false alarm detections well, with 64% rating the algorithm’s
ability to handle false alarms as “good” or “very good” with
31% rating it as “fair”. The forecasters were divided on
whether the developer should prioritize implementing a more
aggressive detection filtering method. However, they agreed
that users would likely trust the algorithm more if non-
meteorological and obviously non-tornadic detections were
filtered out. During the first two weeks of the experiment,
participants were asked if they would like a way to hide de-
tections based on probability, a feature that most of them felt
was necessary. To address this feedback, a probability slider
was introduced during the second week and tested during the
third week of the experiment (Fig. 8). The slider allows users
to threshold detections based on their preferred probability
values. While some participants from the third week still sug-
gested that the algorithm should have more internal filtering,
most felt that the slider enabled them to sufficiently filter out
detections caused by bad data (Fig. 9). The majority of partic-
ipants also agreed that relying solely on the probability slider

would be preferable to inadvertently filtering out legitimate
tornado detections in areas of weak reflectivity by applying
excessive filtering.

In addition to the probability slider, one idea that was sug-
gested to mitigate false-alarm detections was to include an op-
tion to turn on a method that aggressively filtered detections.
To accommodate the forecaster preference to preserve weak
tornado detections, a new output flag was added to TORP fol-
lowing the experiment, which allows visualization software to
provide users with the option to toggle between regular and
aggressive detection filtering. This aggressive filtering can be
turned off if a weather event appears to be conducive to rotat-
ing storms with weak reflectivity signatures or those exhibit-
ing displacement between velocity and reflectivity signatures.
Another measure to limit false detections that has been

FIG. 8. The TORP AWIPS-II menu available at the end of the ex-
periment for customizing the output displayed to the user.
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implemented since the HWT experiment was to provide the
option to flag and remove low-probability detections within
30 km of a radar, allowing the user to view the flagged detec-
tions in the event that a storm is passing over or near a radar
site.

The forecasters also noted that issues in velocity data, such
as velocity de-aliasing failures or sidelobe contamination
caused by large hail, are more likely to produce higher tor-
nado probabilities than the obvious noise detections based on
clutter. The effects of this type of contaminated data could
also cause more erratic detection locations when tracking a
circulation over time. While experienced forecasters can rec-
ognize signs of hail contamination, it can be challenging to
identify for anyone with less training in examining radar data.
Forecasters suggested that these commonly encountered
noise detections should be emphasized in TORP’s training
documents. Many forecasters said they were more accepting
of false alarms once they understood exactly how and why
TORP responded to certain types of bad data, stressing the
need for thorough training that explores the algorithm’s be-
havior and caveats.

The participants were also able to identify a few rare cases
where TORP did not behave as anticipated. As such, TORP’s
internal object identification logic was revised to properly
handle certain artifacts in the radar data that could lead to
multiple detections for one tornadic storm or cause missing
detections, which was a very important internal algorithm im-
provement directly resulting from feedback gathered in fore-
caster blog posts. There were also several improvements to
TORP that participants said would expand the current capa-
bilities of the algorithm. Forecasters emphasized a desire for
TORP to provide predictive information, such as increases in
rotation that were forecast. There are ongoing efforts to ex-
pand TORP from a detection algorithm to a detection and
prediction algorithm. Currently, a dataset including the 0–60-min
pretornadic period of all tornadic storms in the dual-polarization
era (2013 to present) is being generated. This dataset will be
used to develop pretornadic probabilities separate from the cur-
rent tornado detection probabilities, potentially allowing the
users to better forecast increasing tornado potential. Participants
also suggested expanding TORP’s detection generation to other

radar tilts, as TORP was only available with the 0.58 tilt dur-
ing the experiment. Following the HWT, this particular algo-
rithm expansion has been completed and TORP can now
process any radar tilt. Limited testing of this new capability
on tilts below 1.98 showed very little, if any, change in objec-
tive performance metrics from the 0.58 tilt. Finally, an up-
grade to include probabilities for whether a detection has the
potential to produce a significant (EF21) tornado was discussed
with the forecasters, which was generally a well-received idea.
A preliminary machine learning model has been trained to pro-
vide these probabilities, which can be incorporated into the list
of TORP outputs and used to support impact-based tornado
warning tag decisions.

b. NMDA

1) FORECASTER-EVALUATED ALGORITHM

PERFORMANCE

To evaluate the performance of the NMDA during the
2021 HWT, key questions in both the individual and weekly
surveys asked how well the NMDA performed regarding its
ability to both detect and track mesocyclones. Similar survey
questions during the 2019 HWT evaluation allowed perceived
impacts of algorithm improvements on the NMDA’s perfor-
mance to be measured. When participants were asked to rate
the NMDA’s ability to detect individual mesocyclones, 83%
of 2021 participants provided a “good” or better rating, a
16% increase over the 2019 evaluation (67%; Fig. 10a). Simi-
larly, there was a 14% increase between the 2019 (58%) and
2021 (72%) evaluations for those participants that provided a
“good” or better rating when asked about the NMDA’s abil-
ity to track an individual mesocyclone (Fig. 10b). While the
evaluation ratings showed modest increases between experi-
ment iterations, it shows that the additional improvements
to the NMDA trended in the right direction. Additionally,
no participants found the detecting and tracking perfor-
mance to be “poor” or “very poor,” revealing that even in
difficult environments, the NMDA still performed to accept-
able standards.

Along with their performance ratings, participants were
also asked to provide a brief explanation regarding their

FIG. 9. Weekly survey feedback concerning TORP’s low-probability false alarms. The number of
responses for each option is listed to the right of each bar.
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choice for the evaluation rating. Even though 83% and 72%
of participants provided a “good” or better rating for the
NMDA’s detecting and tracking abilities, respectively, only
11% (detecting) and 17% (tracking) of those were associated
with the top rating of “very good.” Examining the partici-
pants’ justifications for ratings of “good” or lower, many men-
tioned false detections as the contributing factor to their
specific rating. When asked to rate the NMDA’s ability
to handle false alarm detections in the end-of-week survey,
61% of participants stated that the NMDA performed “fair”
overall. However, on a case-by-case level, this percentage
would fluctuate dependent on the storm type due to the afore-
mentioned detection generation difficulties outlined in the
appendix. As a quick method to reduce false alarm detections,
a week 1 participant, along with a few others, suggested that
“a lot of these [false detections] can be eliminated by hiding the
lower end detections.” Due to this, a user-adjustable detec-
tion-thresholding tool based on the detection’s AzShear value
(strength) was introduced during week 2 and tested during
week 3 of the experiment that helped participants to reduce
the number of false detections displayed. While the sample
size of the end-of-week surveys is too low to notice any
marked change in the participants perceptions toward the
NMDA’s handling of false detections, examining the surveys
given at the end of every evaluation case shows slight im-
provements between week 1 and weeks 2–3 that are likely at-
tributed to the thresholding tool. Utilizing the surveys from
archived cases to provide a fair comparison between each
week, there was a 10% reduction in ratings of “fair/poor”
combined with a 10% increase of “good/very good” between
weeks 1 and 2, something that was also mirrored between
weeks 1 and 3 where a 22% decrease/increase of “fair/poor”
and “good/very good” occurred, respectively. While this
thresholding tool proved useful, reducing false detections

internally in the algorithm prior to output is the most ideal so-
lution to this problem.

2) IMPACT TO WARNING DECISIONS AND OTHER

OPERATIONAL UTILITIES

While the NMDA performs well in its intended purpose of
detecting and tracking rotational features, it is extremely im-
portant to understand its usefulness in the operational warn-
ing environment. The goal of the NMDA is to assist end users
with storm interrogation and provide additional confidence
measures during the warning-decision process. Participants
were asked how they would utilize the algorithm during their
warning-issuance workflow and how this integration would
impact their warning-decision process. Participants stated that
their use of the NMDA converged on two methods during
warning operations: 1) as a situational awareness tool and
2) a confidence builder when already considering a warning.

The NMDA helped as a situational awareness tool by alert-
ing forecasters to strengthening storms and as a prioritization
tool for deciding which storms required attention first, espe-
cially in complex situations or for those participants who were
playing the role of a mesoscale analyst forecaster. Storm pri-
oritization is an important skill for a warning forecaster and
one that is aided by the NMDA, shown by one participant
who stated “I really liked overlaying NMDA detections from
several radars, as this helped my situational awareness, and
helped me prioritize storms in the SRAD [Screen, Rank, Analyze,
Decide] process.” When participants were asked if the NMDA
made them consider warning a storm that they otherwise
would not have noticed, eight out of 18 participants (44%) an-
swered “yes,” with a few of the participants stating this for
cases occurring in low-end severe situations that can be chal-
lenging to the warning forecaster. An additional four partici-
pants responded with “maybe,” stating that while the NMDA
detections did not move them to consider warning a storm,
the detections did draw their attention to a storm that they
were not already watching. The NMDA is well suited in aid-
ing in situational awareness during chaotic or mixed-mode
storm environments, which according to several participants,
would have an immediate operational impact to those serving
as a mesoscale analyst forecaster.

When a participant was already considering issuing a warn-
ing, the NMDA acted, to varying degrees, as a warning-confi-
dence builder. The amount of increased confidence differed
depending on the storm environment. For more straightfor-
ward warning cases, such as those containing isolated super-
cells, the NMDA contributed less to their warning confidence
since radar base data already confirmed their warning deci-
sion. The NMDA generally helped increase confidence for sce-
narios such as QLCS circulations or marginally severe storms,
where the NMDAmight highlight a feature that was not readily
apparent to a participant in the radar base data. It should be
noted that while the NMDA can build warning confidence,
most participants stated they would not necessarily use it to di-
rectly issue a warning, instead relying heavily on their own
warning experience and analysis of the base data to make those
final decisions. As one participant noted, “it is extremely difficult

FIG. 10. Weekly survey results of the participants’ perception of
the NMDA’s ability to (a) detect and (b) track mesocyclones from
the 2019 to 2021 HWT evaluations (N 5 33 and 18, respectively).
Note that there were no “very poor” ratings for either detecting or
tracking in the 2019 and 2021 HWT evaluations. In addition, the
only ratings of “poor” (two total) were for tracking in the 2019
HWT evaluation.
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if not impossible to train a computer algorithm to see what the
human eye is seeing with storm structure, etc.,” highlighting the
importance of the human element in severe weather forecast-
ing. This suggests that, for certain aspects of storm analysis,
experienced forecasters must rely on their own visual interpre-
tation of the raw data.

At the end of each evaluation week, participants were
asked how their confidence in utilizing the NMDA in the
warning decision process changed relative to the start of the
week. Using a 7-point confidence scale that ranged from
“decreased considerably” to “increased considerably,” 15 of
the 18 participants stated that their confidence increased, sev-
eral of which had “considerably” or “moderately” increased
confidence. They attributed this confidence to the multitude
of storm modes and environments that they evaluated the
NMDA with over the course of the experiment. This allowed
them to visually see the NMDA’s successes and limitations,
which enabled them to mentally calibrate to what the algo-
rithm was displaying. Others acknowledged that their current
understanding of the subpar performance of the operational
MDA products helped to quickly instill confidence in the
NMDAwhen they saw how well it performed in comparison.

3) IDENTIFIED LIMITATIONS AND METHODS TO

ADDRESS THEM

False detections were the most impactful limitation of the
NMDA that directly affected forecaster use of the algorithm.
When participants provided lower scores for their perceived
performance of the NMDA’s detecting and tracking abilities,
many of them listed these false detections as a contributing
factor to their decision. In fact, when participants were asked
if they could request one improvement for the NMDA, the
leading performance-related improvement was to reduce false
detections. These unwanted detections within the NMDA are
caused by various means, including turbulent velocity fields
and contaminated velocity data. While quality-control meth-
ods were in place for this particular prototype, the HWT eval-
uation illustrated the need for additional work to reduce false
detections. These efforts focused on improving the techniques
used in the generation of rotational interest objects within
each individual tilt, as well as the vertical linking of these ob-
jects to build the final detections (see the appendix for an
overview of the detection generation process). The largest re-
duction of false detections involved developing a technique
that combines and re-evaluates preliminary rotational interest
objects that occur along the radar radial, helping to reduce the
false detections that occur along linear features, such as QLCSs.
Another false detection reduction endeavor involved the com-
plete reconstruction of the mechanism used to build the final
detections. A switch to a more dynamic and computationally ef-
ficient approach in vertically linking rotational interest objects
between neighboring tilts helped reduce incorrect linkages that
could led to the creation of false detections. This was accom-
plished by examining whether a specific interest object on a
higher tilt had multiple possible links from the neighboring
lower tilt, and if so, comparing the object attributes from the
lower tilt to determine the best match}a check that was not

done in the previous vertical linking method. Additionally,
the updated detection construction methodology enabled
the removal of a previous restriction aimed to reduce false
alarms that only allowed the base of a detection to begin
within the first three tilts of a volume scan, hence permitting
more midlevel mesocyclones to be properly detected by the
NMDA, which was an additional performance-related im-
provement that was requested by several of the participants,
with one stating that “the single-radar objective analysis
through the depth of the storm is the most valuable part of
the algorithm.”

In addition to reducing false detections, participants also
noted that some sporadic detection tracking inconsistencies
occasionally introduced errors into the detection’s trend at-
tributes. Participants considered this trend information to be
an important component of the NMDA as it provides a sense
on how rotational features are changing over time. These in-
consistencies were found to be related to the tracking-derived
forward-motion estimates of detections that would cause in-
correct linking with downstream detections. This was cor-
rected by relaxing or further constraining thresholds that
were set to limit the distance and direction between linked de-
tections, as well as checking for unrealistic attributes trends,
such as storm motion. Overall, combining the improved de-
tection tracking methodology with that of the refined detec-
tion building process worked to reduce the identified
limitations of the NMDA associated with false detections and
object tracking.

c. Concurrent use of both algorithms by participants

While the evaluations of both the NMDA and TORP were
independent, many participants examined both simultaneously
during case evaluations. This inadvertently led to discoveries on
how participants used both algorithms together to help in their
decision-making process. Some participants found concurrent
use to be particularly useful, especially when detections over-
lapped, indicating that the feature of interest had both tor-
nado potential (TORP) and vertical continuity (NMDA).
This provided them additional confidence that the storm fea-
ture they were analyzing on radar during warning operations
had merit and was unlikely to be caused by spurious radial
velocity data.

While there were no apparent performance-related draw-
backs to using both algorithms together, one participant did
acknowledge that the slightly different color tables used to
display a detection icon’s strength (NMDA) or probability
(TORP) caused some confusion if detections were overlaid.
Their experience made them associate the color of the detec-
tion icon with the severity of the threat, and in their particular
example, the color of the NMDA detection icon indicated a
lower threat than that of the TORP detection icon, even
though both detections were sampling the same feature. They
acknowledged that they knew both algorithms were display-
ing different data but it caused them to pause and critically
reason why, which could potentially delay them in their warn-
ing issuance process. Ultimately, this is an aspect that will
have to be addressed in future training materials to make
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users who plan to use the algorithms together aware of this
possibility.

d. Algorithm visualizations within AWIPS-II

The new AWIPS-II visualization plugin, a major point of
the evaluation during the 2021 HWT, received positive feed-
back from participants. Due to the simple and easy-to-use for-
mat that efficiently utilized AWIPS-II screen space, participants
stated that it was a large improvement over the long-standing
visualizations used by the TDA and MDA. The mouse-over de-
tection attribute list was welcomed by participants because it
provided detection information on-demand; however, proper
organizational listing of the attributes was deemed a necessity
to facilitate quick use of the algorithm in a warning environ-
ment. For those attributes that contained trend information and
climatology-derived categorical severity labels, participants
deemed them useful, but would prefer raw climatological per-
centile values in addition to the categorical levels, and requested
long-term trend information, preferably in the form of a trend
graph.

Many participants suggested changes to enhance the usabil-
ity of the visualization tool for forecasters in an operational
environment. During the first week, participants suggested
two features: 1) the ability to customize the list of detection
attributes displayed via the mouse-over feature, as well as
2) an adjustable thresholding slider to filter the detections
based on tornado probability (TORP; Fig. 8) or AzShear
strength (NMDA). Both suggestions came from a desire to
only view detections and attributes that were important to the
forecaster’s specific needs. One forecaster stated that “[they]
likely would not use the NMDA or would only use it
sparingly” due to “the organization of the readout and the false
alarm detections” when asked whether they would use the
NMDA in operations as it was presented during the HWT,
showing that they felt that these particular improvements
were necessary for them to use the algorithm.

The HWT technical staff were able to implement these im-
provements for participants to fully review starting on Thurs-
day during the second of the experiment. The customizable
attribute list was welcomed by participants, but they thought
that too many attributes were displayed by default, forcing
the end user to adjust the list prior to algorithm use. Partici-
pants stated they would prefer to start with a simplified list of
the commonly used attributes that could be adjusted as
needed. During the third week of the experiment, the default
list of output variables was reduced, while the attributes avail-
able for display with TORP detections were expanded. This
expansion included all of the predictors that showed statistical
differences between tornadic and non-tornadic populations.
The thresholding slider was also met with wide acclaim as it
gave participants the ability to threshold which detections
were displayed, prompting survey feedback such as “the slider
was a very useful addition” and that they “love[d] the slider
bar.” Some participants commented on the slider’s effective-
ness in filtering out false alarm detections in the NMDA, stat-
ing that while there were “still a few false alarms around areas

of rotation,” they found that increasing the threshold was
“very beneficial at reducing these false signatures.”

The continuous evolution of the visualization package dur-
ing the course of the experiment allowed PIs to obtain near
real-time feedback on how these changes performed in the
pseudo-operational environment of the HWT. By the end of
the experiment, PIs had a targeted list of improvements for
the visualization plugin. Minor technical improvements in-
cluded time matching of the products with other data sources
and differentiating between periods when data are not avail-
able and those when no detections are present due to a lack
of rotating storms. Other larger improvements centered around
increased end-user customization that would provide additional
utility to the visualization. One customization included optional
trailing tracks attached to the detection icons that are shaded by
the historical values of the object’s probability (TORP) or
strength (NMDA; Fig. 11). The length of the tracks can be
adjusted based on the number of detections or time dura-
tion, allowing users to see both trends and the past track
of each detection. Other customization features included a
sortable detection attribute list, letting the users fully custom-
ize how to display the text output of the products, and the
ability to share algorithm settings between multiple AWIPS-II
panes.

While AWIPS-II provides a robust and expandable plat-
form to visualize TORP and NMDA, operational end users
such as those within the DoD do not currently have access to
AWIPS-II while performing their duties. To ensure that these
important members of the operational forecaster community
have access to these new and powerful tools, those responsi-
ble for the operational transition of these algorithms will need
to develop alternative methods to display TORP and NMDA
on non-AWIPS-II third-party radar data visualization plat-
forms, such as the Gibson Ridge (Gibson Ridge Software
LLC 2023) suite of visualization software that was suggested
by the DoD participants, who attended both the 2019 and
2021 HWT.

6. Summary and conclusions

In summary, the virtual 2021 HWT EWP RCA experiment
was considered a success by both PIs, HWT technical staff,
and participants. Through verbal discussions and surveys that
were conducted throughout the week, the participants con-
veyed their satisfaction with the virtual experiment experi-
ence. The quality and details of the feedback obtained during
the experiment has played a crucial role in the continued de-
velopment of the algorithms. TORP and NMDA received
positive feedback from the participants overall, with many
hoping to see them available to the operational field in the
near future. Several forecasters stated that the new algorithms
exceeded their expectations based on their previous experi-
ence with the TDA and MDA, emphasizing that the upgrades
are sorely needed. In the operational environment, both algo-
rithms scored high on usefulness as a situational awareness
tool and as a confidence builder in severe warning operations.
During tornado warning operations, TORP was able to pro-
vide additional details that aided quick decision making
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within the warning-issuance process, with several forecasters
stating that TORP provided nearly everything they would
want in a tornado detection tool. Both algorithms can provide
a concise summary of various single-radar products, enabling
the end-user to relate the information to the convective warn-
ing process by pinpointing areas of rotation, something that
may not be detected by operational tools that are grid-based
or focus on larger reflectivity-based storm objects. The com-
pletely new AWIPS-II visualization package for the algo-
rithms also received high marks from the participants who
were especially pleased with the ability to customize and filter
the detections.

With some additional adjustments, most participants felt
that the algorithms were very close to achieving a final opera-
tional readiness level. These suggested adjustments were
mainly centered on the continued reduction of false detec-
tions, most of which have been addressed since the conclusion
of the experiment. The feedback received by project PIs aided
in the advancement of the R2O process for both TORP and
NMDA, enabling both algorithms the necessary information
to progress to the point of being ready for operational tran-
sition. Discussions between project PIs and the ROC re-
garding the operational transition are currently underway.
Many of the suggested features for both the algorithms and

FIG. 11. Example of the new visualization features added to the prototype TORP/NMDA AWIPS-II plugin following experiment feed-
back. (top) A TORP detection with a track shaded by the previous probabilities associated with the detection, with the dashed line style
signifying tracks that are older than a set time threshold, which in this example is 10 min. (bottom) NMDA detections with a new menu
prototype, which lets the user adjust a multitude of different parameters, such as showing detections from multiple radars, enabling custom
sorting of the readout variables, and setting visual alerts for detections exceeding a certain AzShear threshold.
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the AWIPS-II visualization were incorporated, further improv-
ing their utility for the end user. In addition to the AWIPS-II
product that was tested in this experiment, TORP has also been
integrated into another HWT EWP experiment that involves
the Forecasting a Continuum of Environmental Threats
(FACETs) program (Rothfusz et al. 2018), where the algo-
rithm provides tornado probability guidance for the fore-
caster creation of Probabilistic Hazards Information (PHI) in
an experimental version of Hazard Services (Argyle et al.
2017; Calhoun et al. 2021).

Relating to the structure of the experiment, the project PIs
and HWT technical staff learned a great deal about conduct-
ing a virtual HWT experiment utilizing AWIPS-II remotely
via a cloud platform, ensuring future virtual HWT experi-
ments can successfully operate. While AWIPS-II operated
well in the AWS cloud, the various types of hardware and
connection locations (e.g., home or office) used by partici-
pants did cause some problems, such as firewalls preventing
entry to the cloud instance or the participants’ hardware not
allowing the cloud instance to display properly. While these
were largely able to be addressed quickly and efficiently, in
an effort to save time and keep the experiment running
smoothly, it is suggested to work with participants prior to
their HWT week to test the Internet connection and hardware
capabilities that they will be using to remotely attend. Beyond
the technical aspects associated with a virtual HWT, project
PIs need to consider the breadth of various time zones that
their participants could reside in and generate their daily
HWT operations schedule accordingly. This will likely
shorten the daily operating hours of the experiment, which
can take away valuable real-time operating periods in the late
afternoon and evening (typically the peak time for severe
weather) and shorten the amount of time for training and
learning at the beginning of the experiment. With this in
mind, it is especially important to have any necessary training
and information prepared and available to the participants
well in advance of the start of their experiment week. Despite
some of these challenges that were encountered as a conse-
quence of being fully virtual, the participants were impressed
by the efficiency of the virtual experiment. End-of-week
surveys indicated that 100% of the participants would
“definitely” or “probably” participate in a future HWT exper-
iment if it required forecasters to participate virtually, and
would recommend the experience to a fellow coworker. The
success of this particular virtual HWT framework validates
that virtual participation can be effective, potentially ex-
panding the availability of the HWT to a broader set of
participants.

Overall, this experiment continued the long-standing his-
tory of communication between researchers and the opera-
tional community through the use of testbeds, where the
intended end users can explore new tools and provide feed-
back during the R2O process. This type of interaction be-
tween developers and users can help identify operational
needs that might not be discovered otherwise, likely leading
to the creation of more robust and useful products. Virtual
evaluations of tools like these could also be imitated in a less
formal setting, such as remote demonstrations with NWS

Weather Forecast Offices, to showcase tools to local forecast-
ers during real-time severe weather, providing new avenues
of communication to further increase accessibility to proto-
type tools and techniques that are destined for operations.
The authors of this publication hope the findings of this HWT
experiment will serve to guide future single-radar algorithm
development in considering key aspects to focus on that
will impact their usefulness in the operational warning
environment.
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APPENDIX

NMDA Algorithm Description

In overview, the NMDA operates using the following
method:

1) Find preliminary interest areas for each individual tilt}As
each radar tilt is received, the algorithm overlays the input
products (Fig. A1) for that tilt and determines the areas
of rotational interest, which are refined to keep only the
locations of peak AzShear values. Each peak undergoes a
quality-control process that uses reflectivity, spectrum
width, and a velocity-derived total-shear LLSD gradient
(TotalShear) to help reduce false detections. This process
is performed on all tilts received by the algorithm.

2) Build detections by combining interest areas from multiple
tilts}Once a triggering event occurs (a specific radar tilt
is ingested or the end of the volume is reached), the areas
of peak rotation are compared between neighboring tilts.
If their attributes meet certain criteria, they are joined to
vertically build detections. Detection building is com-
pleted once all available tilts and their associated rota-
tional peaks have been exhausted.

3) Tracking detections temporally and spatially}After two
or more occurrences of detection building, the NMDA
will attempt to link these detections over space and time,
allowing trend information to be generated (i.e., change
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in strength, traveling speed). A model-derived sounding
table, if available, is used to calculate an approximate
mean storm motion that initially is used to link down-
stream detections. Once two or more detections have
been linked, tracking gradually transitions to a completely
object-based approach. If multiple detections are found
downstream, detection attributes are compared to link
the detections that most closely match.

As with any radar-based algorithm, there are strengths
and weaknesses associated with the NMDA’s detecting
ability, largely owing to storm type and quality of the in-
put radar data. The NMDA excels with isolated storm en-
vironments, such as those associated with supercells and
ordinary cell convection, and in certain linear situations
(e.g., QLCS) in which the linear feature is more perpen-
dicular to the beam. The NMDA encounters degraded
performance, largely in the form of false detections, in linear
storm environments where the linear feature is parallel to
the radar beam and occasionally in postfrontal stratiform
precipitation regions where turbulent wind fields are pre-
sent. Recent advancements to the algorithm, which are dis-
cussed in this publication, have served to reduce false
detections in these situations to improve overall algorithm
performance. In general, NMDA performance will likely
be affected if any of the input products are affected by
contaminated data, such as with hail contamination or ter-
rain effects.
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2005: Polarimetric tornado detection. J. Appl. Meteor., 44,
557–570, https://doi.org/10.1175/JAM2235.1.

Sandmæl, T. N., and Coauthors, 2023: The tornado probability
algorithm: A probabilistic machine learning tornadic circulation
detection algorithm. Wea. Forecasting, 38, 445–466, https://
doi.org/10.1175/WAF-D-22-0123.1.

Scharfenberg, K. A., and Coauthors, 2005: The Joint Polarization
Experiment: Polarimetric radar in forecasting and warning
decision-making. Wea. Forecasting, 20, 775–788, https://doi.
org/10.1175/WAF881.1.

Serafin, R. J., A. E. MacDonald, and R. L. Gall, 2002: Transition
of weather research to operations: Opportunities and chal-
lenges. Bull. Amer. Meteor. Soc., 83, 377–392, https://doi.org/
10.1175/1520-0477(2002)083,0377:TOWRTO.2.3.CO;2.

Stumpf, G. J., A. Witt, E. D. Mitchell, P. L. Spencer, J. T. Johnson,
M. D. Eilts, K. W. Thomas, and D. W. Burgess, 1998: The
National Severe Storms Laboratory mesocyclone detection
algorithm for the WSR-88D. Wea. Forecasting, 13, 304–326,
https://doi.org/10.1175/1520-0434(1998)013,0304:TNSSLM.2.
0.CO;2.

Torres, S. M., and C. D. Curtis, 2007: Initial implementation of
super-resolution data on the NEXRAD network. 21st Int.
Conf. on Interactive Information Processing Systems for
Meteorology, Oceanography, and Hydrology, San Antonio,
TX, Amer. Meteor. Soc., 5B.10, https://ams.confex.com/ams/
pdfpapers/116240.pdf.

Warning Decision Training Division, 2022a: Radar & Applications
Course (RAC)}Base and derived products}Introduction to
base and derived products. Warning Decision Training Division,
accessed 10 January 2023, https://training.weather.gov/wdtd/
courses/rac/products/intro/story.html.

}}, 2022b: Radar & Applications Course (RAC)}Base and
derived products}Mesocyclone (MD) and digital mesocyclone
(DMD). Warning Decision Training Division, accessed 7 March
2023, https://training.weather.gov/wdtd/courses/rac/products/md-
dmd/presentation_html5.html.

Wieler, J. G., 1986: Real-time automated detection of meso-
cyclones and tornadic vortex signatures. J. Atmos. Oceanic
Technol., 3, 98–113, https://doi.org/10.1175/1520-0426(1986)
003,0098:RTADOM.2.0.CO;2.
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